a

Sains Malaysiana 54(5)(2025): 1305-1318

http://doi.org/10.17576/jsm-2025-5405-09

 

Effect of Elevated Temperature on the Growth, Physiological, and Yield-Related Traits of Commercial Rice in Malaysia

(Kesan Suhu Tinggi ke atas Pertumbuhan, Fisiologi dan Sifat Berkaitan Hasil Padi Komersial di Malaysia)

 

GOMATHY SETHURAMAN1, NORMANIZA OSMAN1, ACGA CHENG1, WICKNESWARI RATNAM2, MOHD RAZI ISMAIL3 & NURUL AMALINA MOHD ZAIN1,*

 

1Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

2Nomatech Sdn Bhd, TGB-01, Block B, UKM-MTDC Technology Centre, Universiti Kebangsaan Malaysia, 43650 UKM Bangi, Selangor, Malaysia

3Faculty of Agricultural Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

Received: 30 July 2024/Accepted: 7 February 2025

 

Abstract

Rising temperatures from climate change threaten rice production, impacting livelihoods, global food security, and the sustainability of feeding a growing population. Unlike most studies focusing on specific growth stages, this study investigated the effects of  35 °C (T35) and 36 °C (T36) on the growth, physiological traits across all growth stages and yield-related traits of four Malaysian rice varieties - Sempadan 303 (S303), Sebernas 307 (S307), UKMRC02 (RC02), and UKMC09 (RC09) – compared to MR219, a high-yielding variety. Elevated temperature observed significant differences in plant height (PH), leaf area index (LAI), 100-filled grain weight (100GW), filled grain (FG),  grain to leaf area ratio (GToLAI), and several grain nutrients in rice varieties. LAI correlated positively with PH (R2=0.723**) and stomatal conductance (R2=0.672**). All varieties recorded higher relative chlorophyll content at 126 days after sowing (DAS) surpassing values at 90 DAS and were significantly higher in T36 for MR219 and S303 showing adaptation to elevated temperature. The harvest index was higher in T36 across all varieties, except RC02, which had a lower FG. All varieties showed no significant difference in Mg, Al, and Si, although MR219 and RC09 had lower P and K in T36. Ca was higher in T36 for all varieties except MR219. This study highlights the varied growth, physiological, and yield-related responses of Malaysian rice varieties to elevated temperatures, with MR219, S303, and RC09 showing strong adaptation due to better stress-coping mechanisms such as maintaining higher LAI, 100GW, HI, and Ca, while S307 and RC02 demonstrated susceptibility.

Keywords: Climate change; increased temperature; Malaysian rice; rice growth; rice yield

 

Abstrak

Peningkatan suhu akibat perubahan iklim mengancam pengeluaran padi, menjejaskan mata pencarian, keterjaminan makanan global dan kelestarian dalam menampung keperluan makanan bagi populasi yang kian meningkat. Berbeza dengan kebanyakan kajian yang memfokuskan peringkat pertumbuhan tertentu, penyelidikan ini mengkaji kesan suhu, 35 °C (T35) dan 36 °C (T36) ke atas morfo-fisologi bagi semua peringkat pertumbuhan dan parameter berkaitan hasil empat varieti padi Malaysia - Sempadan 303 (S303), Sebernas 307 (S307), UKMRC02 (RC02) dan UKMC09 (RC09) – berbanding varieti hasil tinggi MR219. Peningkatan suhu menunjukkan perbezaan signifikan pada ketinggian pokok (PH), indeks keluasan daun (LAI), berat 100 bijirin berisi (100GW), peratus bijirin berisi (FG), nisbah bijirin kepada LAI (GToLAI) dan beberapa nutrien bijirin dalam varieti padi. LAI berkolerasi positif dengan PH (R2=0.723**) dan konduksian stomata (R2=0.672**). Semua varieti mencatatkan kandungan klorofil relatif yang lebih tinggi pada 126 hari selepas disemai (DAS) berbanding pada 90 DAS. Peningkatan ini ketara dalam T36 untuk MR219 dan S303, menunjukkan kemampuan adaptasi terhadap pengingkatan suhu. Semua varieti mencatat indeks hasil lebih tinggi dalam T36, kecuali RC02 yang mempunyai FG lebih rendah. Semua varieti tidak menunjukkan perbezaan signifikan kandungan Mg, Al dan Si tetapi MR219 dan RC09 merekod kandungan P dan K lebih rendah dalam T36. Ca lebih tinggi dalam T36 untuk semua varieti kecuali MR219. Kajian ini menekankan pelbagai tindak balas pertumbuhan, hasil dan nutrien varieti padi Malaysia terhadap peningkatan suhu. MR219, S303 dan RC09 menunjukkan adaptasi yang baik melalui mekanisme penyesuaian dengan mengekalkan LAI, 100GW, HI, dan Ca yang lebih tinggi berbanding S307 dan RC02 yang menunjukkan kerentanan.

Kata kunci: Hasil padi; kenaikan suhu; padi Malaysia; pertumbuhan pokok; perubahan iklim

 

REFERENCES

Ali, F., Waters, D.L.E., Ovenden, B., Bundock, P., Raymond, C.A. & Rose, T.J. 2019. Heat stress during grain fill reduces head rice yield through genotype dependant increased husk biomass and grain breakage. Journal of Cereal Science 90: 102820. https://doi.org/10.1016/j.jcs.2019.102820

Begcy, K., Sandhu, J. & Walia, H. 2018. Transient heat stress during early seed development primes germination and seedling establishment in rice. Frontiers in Plant Science 9: 1768. https://doi.org/10.3389/fpls.2018.01768

Bellasio, C. 2023. The slope of assimilation rate against stomatal conductance should not be used as a measure of water use efficiency or stomatal control over assimilation. Photosynthesis Research 158(3): 195-199. https://doi.org/10.1007/s11120-023-01054-6

Caine, R.S., Harrison, E.L., Sloan, J., Flis, P.M., Fischer, S., Khan, M.S., Nguyen, P.T., Nguyen, L.T., Gray, J.E. & Croft, H. 2023. The influences of stomatal size and density on rice abiotic stress resilience. New Phytologist 237(6): 2180-2195. https://doi.org/10.1111/nph.18704

Chaturvedi, A.K., Bahuguna, R.N., Pal, M., Shah, D., Maurya, S. & Jagadish, K.S.V. 2017. Elevated CO2 and heat stress interactions affect grain yield, quality and mineral nutrient composition in rice under field conditions. Field Crops Research 206: 149-157. https://doi.org/10.1016/j.fcr.2017.02.018

Dorairaj, D. & Govender, N.T. 2023. Rice and paddy industry in Malaysia: Governance and policies, research trends, technology adoption and resilience. Frontiers in Sustainable Food Systems 7: 1093605. https://www.frontiersin.org/articles/10.3389/fsufs.2023.1093605

Ezin, V., Ahanchede, W.W., Ayenan, M.A.T. & Ahanchede, A. 2022. Physiological and agronomical evaluation of elite rice varieties for adaptation to heat stress. BMC Plant Biology 22: 236. https://doi.org/10.1186/s12870-022-03604-x

Hussain, S., Khaliq, A., Ali, B., Hussain, H.A., Qadir, T. & Hussain, S. 2019. Temperature extremes: Impact on rice growth and development. In Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches, edited by Hasanuzzaman, M., Hakeem, K.R., Nahar, K. & Alharby, H.F. Springer International Publishing. pp. 153-171. https://doi.org/10.1007/978-3-030-06118-0_6

Jayaraman, V. & Ramachandran, M. 2022. Heat tolerance and effect of high temperature on floral biology and physiological parameters in rice: A review. Agricultural Reviews 45(1): 115-120. https://arccjournals.com/journal/agricultural-reviews/R-2353

Kandel, B.P. 2020. Spad value varies with age and leaf of maize plant and its relationship with grain yield. BMC Research Notes 13(1): 475. https://doi.org/10.1186/s13104-020-05324-7

Kilasi, N.L., Singh, J., Vallejos, C.E., Ye, C., Jagadish, S.V.K., Kusolwa, P. & Rathinasabapathi, B. 2018. Heat stress tolerance in rice (Oryza sativa L.): Identification of quantitative trait loci and candidate genes for seedling growth under heat stress. Frontiers in Plant Science 9: 1578. https://www.frontiersin.org/articles/10.3389/fpls.2018.01578

Krishna Jagadish, S.V., Muthurajan, R., Rang, Z.W., Malo, R., Heuer, S., Bennett, J. & Craufurd, P.Q. 2011. Spikelet proteomic response to combined water deficit and heat stress in rice (Oryza sativa cv. N22). Rice 4: 1-11. https://doi.org/10.1007/s12284-011-9059-x

Li, Y., Ming, B., Fan, P., Liu, Y., Wang, K., Hou, P., Xue, J., Li, S. & Xie, R. 2022. Quantifying contributions of leaf area and longevity to leaf area duration under increased planting density and nitrogen input regimens during maize yield improvement. Field Crops Research 283: 108551. https://doi.org/10.1016/j.fcr.2022.108551

Malini, M.K., Karwa, S., Priyadarsini, P., Kumar, P., Nagar, S., Kumar, M., Kumar, S., Chinnusamy, V., Pandey, R. & Pal, M. 2023. Abscisic-acid-modulated stomatal conductance governs high-temperature stress tolerance in rice accessions. Agriculture 13(3): 545. https://doi.org/10.3390/agriculture13030545

Nadarajah, K., Omar, N.S. & Thing, T.Y. 2014. Molecular characterization of a WRKY gene from Oryza sativa indica cultivar UKMRC9. Plant Omics 7(2): 63-71. https://doi.org/10.3316/informit.319863401224127

Nazir, A., Ullah, S., Saqib, Z.A., Abbas, A., Ali, A., Iqbal, M.S., Hussain, K., Shakir, M., Shah, M. & Butt, M.U. 2021. Estimation and forecasting of rice yield using phenology-based algorithm and linear regression model on sentinel-II satellite data. Agriculture 11(10): 1026. https://doi.org/10.3390/agriculture11101026

Nguyen, K.M., Yang, Z.W., Shih, T.H., Lin, S.H., Lin, J.W., Nguyen, H.C. & Yang, C.M. 2021. Temperature-mediated shifts in chlorophyll biosynthesis in leaves of chlorophyll b-lacking rice (Oryza sativa L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 49(2): 12306. https://doi.org/10.15835/nbha49212306

NurulNahar, E., Adam, P., Mazidah, M., Roslan, I., Rafii, Y.M. & Yusop, M.R. 2020. Rice blast disease in Malaysia: Options for its control. Journal of Tropical Agriculture and Food Science 48(1): 11-23.

Oliver, S.N., Dennis, E.S. & Dolferus, R. 2007. ABA regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice. Plant and Cell Physiology 48(9): 1319-1330. https://doi.org/10.1093/pcp/pcm100

Ouyang, W., Struik, P.C., Yin, X. & Yang, J. 2017. Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought. Journal of Experimental Botany 68(18): 5191-5205. https://doi.org/10.1093/jxb/erx314

Pirayesh, N., Giridhar, M., Ben Khedher, A., Vothknecht, U.C. & Chigri, F. 2021. Organellar calcium signaling in plants: An update. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1868(4): 118948. https://doi.org/10.1016/j.bbamcr.2021.118948

Piveta, L.B., Roma-Burgos, N., Noldin, J.A., Viana, V.E., de Oliveira, C., Lamego, F.P. & de Avila, L.A. 2020. Molecular and physiological responses of rice and weedy rice to heat and drought stress. Agriculture 11(1): 9. https://doi.org/10.3390/agriculture11010009

Plaut, Z., Butow, B.J., Blumenthal, C.S. & Wrigley, C.W. 2004. Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature. Field Crops Research 86(2): 185-198. https://doi.org/10.1016/j.fcr.2003.08.005

Rahman, A.N.M.R. & Zhang, J. 2022. Trends in rice research: 2030 and beyond. Food and Energy Security 2022: e390. https://doi.org/10.1002/fes3.390

Rao, D.S., Siromani, N., Poojitha, J., Sakhare, A.S., Rao, P.R. & Subrahmanyam, D. 2023. Effect of high-temperature stress on rice grain quality. ORYZA-An International Journal of Rice 60(2): 345-352.

Reddy, K.R., Seghal, A., Jumaa, S., Bheemanahalli, R., Kakar, N., Redoña, E.D., Wijewardana, C., Alsajri, F.A., Chastain, D., Gao, W., Taduri, S. & Lone, A.A. 2021. Morpho-physiological characterization of diverse rice genotypes for seedling stage high- and low-temperature tolerance. Agronomy 11(1): 112. https://doi.org/10.3390/agronomy11010112

Rouan, L., Audebert, A., Luquet, D., Roques, S., Dardou, A. & Gozé, E. 2018. Cardinal temperatures variability within a tropical japonica rice diversity panel. Plant Production Science 21(3): 256-265. https://doi.org/10.1080/1343943X.2018.1467733

Rubia, L., Rangan, L., Choudhury, R.R., Kamínek, M., Dobrev, P., Malbeck, J., Fowler, M., Slater, A., Scott, N., Bennett, J., Peng, S., Khush, G.S. & Elliott, M. 2014. Changes in the chlorophyll content and cytokinin levels in the top three leaves of new plant type rice during grain filling. Journal of Plant Growth Regulation 33(1): 66-76. https://doi.org/10.1007/s00344-013-9374-0

Saad, M.M., Saidon, S.A., Noorzuraini, S., Rahman, A., Hashim, S. & Fauzi, M.F.M. 2021. Resistance status of drought-tolerant rice variety’s donor parents to major rice insect pests. Buletin Teknologi MARDI 26: 55-64.

Sanadya, A., Yadu, A., Raj, J., Chandrakar, H. & Singh, R. 2023. Effect of temperature on growth, quality, yield attributing characters and yield of rice - A review. International Journal of Environment and Climate Change 13(8): 804-814. https://doi.org/10.9734/ijecc/2023/v13i82014

Sanwong, P., Sanitchon, J., Dongsansuk, A. & Jothityangkoon, D. 2023. High temperature alters phenology, seed development and yield in three rice varieties. Plants 12(3): 666. https://doi.org/10.3390/plants12030666

Se, C.H., Chuah, K.A., Mishra, A., Wickneswari, R. & Karupaiah, T. 2016. Evaluating crossbred red rice variants for postprandial glucometabolic responses: A comparison with commercial varieties. Nutrients 8(5): 308. https://doi.org/10.3390/nu8050308

Senguttuvel, P., Jaldhani, V., Raju, N.S., Balakrishnan, D., Beulah, P., Bhadana, V.P., Mangrauthia, S.K., Neeraja, C.N., Subrahmanyam, D., Rao, P.R., Hariprasad, A.S. & Voleti, S.R. 2022. Breeding rice for heat tolerance and climate change scenario; possibilities and way forward. A review. Archives of Agronomy and Soil Science 68(1): 115-132. https://doi.org/10.1080/03650340.2020.1826041

Sethuraman, G., Mohd Zain, N.A., Yusoff, S., Ng, Y.M., Baisakh, N. & Cheng, A. 2021. Revamping ecosystem services through agroecology - The case of cereals. Agriculture 11(3): 204. https://doi.org/10.3390/agriculture11030204

Shi, W., Li, X., Schmidt, R.C., Struik, P.C., Yin, X. & Jagadish, S.V.K. 2018. Pollen germination and in vivo fertilization in response to high-temperature during flowering in hybrid and inbred rice. Plant, Cell & Environment 41(6): 1287-1297. https://doi.org/10.1111/pce.13146

Shi, W., Yin, X., Struik, P.C., Xie, F., Schmidt, R.C. & Jagadish, K.S.V. 2016. Grain yield and quality responses of tropical hybrid rice to high night-time temperature. Field Crops Research 190: 18-25. https://doi.org/10.1016/j.fcr.2015.10.006

Shimoyanagi, R., Abo, M. & Shiotsu, F. 2021. Higher temperatures during grain filling affect grain chalkiness and rice nutrient contents. Agronomy 11(7):  1360. https://doi.org/10.3390/agronomy11071360

Sihag, P., Kumar, U., Sagwal, V., Kapoor, P., Singh, Y., Mehla, S., Balyan, P., Mir, R.R., Varshney, R.K., Singh, K.P. & Dhankher, O.P. 2024. Effect of terminal heat stress on osmolyte accumulation and gene expression during grain filling in bread wheat (Triticum aestivum L.). The Plant Genome 17(1): e20307. https://doi.org/10.1002/tpg2.20307

Stuerz, S. & Asch, F. 2021. Responses of rice growth to day and night temperature and relative air humidity - Leaf elongation and assimilation. Plants 10(1): 134. https://doi.org/10.3390/plants10010134

Sunian, E., Ramli, A., Jamal, M.S., Saidon, S.A. & Rahiniza. 2022. Development of high yielding varieties for food sustainability production. Buletin Teknologi MARDI 30: 83-97.

Swapna, S. & Shylaraj, K.S. 2017. Screening for osmotic stress responses in rice varieties under drought condition. Rice Science 24(5): 253-263. https://doi.org/10.1016/j.rsci.2017.04.004

Tan, B.T., Fam, P.S., Firdaus, R.B.R., Tan, M.L. & Gunaratne, M.S. 2021. Impact of climate change on rice yield in Malaysia: A panel data analysis. Agriculture 11(6):  569. https://doi.org/10.3390/agriculture11060569

Tang, K.H.D. 2019. Climate change in Malaysia: Trends, contributors, impacts, mitigation and adaptations. Science of The Total Environment 650: 1858-1871. https://doi.org/10.1016/j.scitotenv.2018.09.316

Thuy, T.L., Thach, T.N., Xa, T.T.T., Nha, C.T., My, V.T.T., Nguyen, N.T.T. & Tien, N.T.K. 2021. Heat stress affects seed set and grain quality of Vietnamese rice cultivars during heading and grain filling period. Journal of Tropical Crop Science 8(3): 154-160.

Wakatsuki, H., Takimoto, T., Ishigooka, Y., Nishimori, M., Sakata, M., Saida, N., Akagi, K., Makowski, D. & Hasegawa, T. 2023. Effectiveness of heat tolerance rice cultivars in preserving grain appearance quality under high temperatures - A meta-analysis. Field Crops Research 310: 109303. bioRxiv. https://doi.org/10.1101/2023.03.09.531821

Wang, B., Cai, W., Li, J., Wan, Y., Li, Y., Guo, C., Wilkes, A., You, S., Qin, X., Gao, Q. & Liu, K. 2020. Leaf photosynthesis and stomatal conductance acclimate to elevated [CO2] and temperature thus increasing dry matter productivity in a double rice cropping system. Field Crops Research 248: 107735. https://doi.org/10.1016/j.fcr.2020.107735

Xu, Y., Chu, C. & Yao, S. 2021. The impact of high-temperature stress on rice: Challenges and solutions. The Crop Journal 9(5): 963-976. https://doi.org/10.1016/j.cj.2021.02.011

Yan, Y., Hou, P., Duan, F., Niu, L., Dai, T., Wang, K., Zhao, M., Li, S. & Zhou, W. 2021. Improving photosynthesis to increase grain yield potential: An analysis of maize hybrids released in different years in China. Photosynthesis Research 150(1-3): 295-311. https://doi.org/10.1007/s11120-021-00847-x

Yang, J. 2018. Effect of high temperature on yield, quality and physiological components of early rice. Pakistan Journal of Agricultural Sciences 55(01): 13-22. https://doi.org/10.21162/PAKJAS/18.2621

Zahra, N., Hafeez, M.B., Ghaffar, A., Kausar, A., Zeidi, M.A., Siddique, K.H.M. & Farooq, M. 2023. Plant photosynthesis under heat stress: Effects and management. Environmental and Experimental Botany 206: 105178. https://doi.org/10.1016/j.envexpbot.2022.105178

Zain, N.A.M., Ismail, M.R., Puteh, A., Mahmood, M. & Islam, M.R. 2014. Impact of cyclic water stress on growth, physiological responses and yield of rice (Oryza sativa L.) grown in tropical environment. Ciência Rural 44(12): 2136-2141. https://doi.org/10.1590/0103-8478cr20131154

Zhen, F., Wang, W., Wang, H., Zhou, J., Liu, B., Liu, B., Zhu, Y., Liu, L., Cao, W. & Tang, L. 2019. Effects of short-term heat stress at booting stage on rice-grain quality. Crop and Pasture Science 70(6): 486. https://doi.org/10.1071/CP18260

Zuki, Z.M., Rafii, M.Y., Ramli, A., Oladosu, Y., Latif, M.A., Sijam, K., Ismail, M.R. & Sarif, H.M. 2020. Segregation analysis for bacterial leaf blight disease resistance genes in rice “MR219” using SSR marker. Chilean Journal of Agricultural Research 80(2): 227-233. https://doi.org/10.4067/S0718-58392020000200227

 

*Corresponding author; email: amalina86@um.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next