Sains Malaysiana 54(5)(2025): 1305-1318
http://doi.org/10.17576/jsm-2025-5405-09
Effect
of Elevated Temperature on the Growth, Physiological, and Yield-Related Traits
of Commercial Rice in Malaysia
(Kesan Suhu Tinggi ke atas Pertumbuhan, Fisiologi dan Sifat Berkaitan Hasil Padi Komersial di Malaysia)
GOMATHY SETHURAMAN1,
NORMANIZA OSMAN1, ACGA CHENG1, WICKNESWARI RATNAM2,
MOHD RAZI ISMAIL3 & NURUL AMALINA MOHD ZAIN1,*
1Institute of Biological Sciences,
Faculty of Science, Universiti Malaya, 50603 Kuala
Lumpur, Malaysia
2Nomatech Sdn Bhd, TGB-01, Block B, UKM-MTDC Technology Centre, Universiti Kebangsaan Malaysia, 43650 UKM Bangi, Selangor, Malaysia
3Faculty of Agricultural Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor,
Malaysia
Received: 30 July 2024/Accepted: 7 February 2025
Abstract
Rising
temperatures from climate change threaten rice production, impacting
livelihoods, global food security, and the sustainability of feeding a growing
population. Unlike
most studies focusing on
specific growth stages, this study investigated the effects of 35 °C (T35) and 36 °C (T36) on the growth, physiological traits across
all growth stages and yield-related traits of four Malaysian rice
varieties - Sempadan 303 (S303), Sebernas 307 (S307), UKMRC02 (RC02), and UKMC09 (RC09) – compared to MR219, a high-yielding
variety. Elevated temperature observed significant differences in plant height
(PH), leaf area index (LAI), 100-filled grain weight (100GW), filled grain (FG), grain to leaf area
ratio (GToLAI), and several grain nutrients in rice
varieties. LAI correlated positively with PH (R2=0.723**) and
stomatal conductance (R2=0.672**). All varieties recorded higher
relative chlorophyll content at 126 days after sowing (DAS) surpassing values
at 90 DAS and were significantly higher in T36 for MR219 and S303 showing
adaptation to elevated temperature. The harvest index was higher in T36 across
all varieties, except RC02, which had a lower FG. All varieties showed no
significant difference in Mg, Al, and Si, although MR219 and RC09 had lower P
and K in T36. Ca was higher in T36 for all varieties except MR219. This
study highlights the varied growth, physiological, and yield-related responses
of Malaysian rice varieties to elevated temperatures, with MR219, S303, and
RC09 showing strong adaptation due to better stress-coping mechanisms such as
maintaining higher LAI, 100GW, HI, and Ca, while S307 and RC02 demonstrated
susceptibility.
Keywords: Climate
change; increased temperature; Malaysian rice; rice growth; rice yield
Abstrak
Peningkatan suhu akibat perubahan iklim mengancam pengeluaran padi, menjejaskan mata pencarian, keterjaminan makanan global dan kelestarian dalam menampung keperluan makanan bagi populasi yang kian meningkat. Berbeza dengan kebanyakan kajian yang memfokuskan peringkat pertumbuhan tertentu, penyelidikan ini mengkaji kesan suhu, 35 °C (T35) dan 36 °C (T36) ke atas morfo-fisologi bagi semua peringkat pertumbuhan dan parameter berkaitan hasil empat varieti padi Malaysia - Sempadan 303 (S303), Sebernas 307
(S307), UKMRC02 (RC02) dan UKMC09 (RC09) – berbanding varieti hasil tinggi MR219. Peningkatan suhu menunjukkan perbezaan signifikan pada ketinggian pokok (PH), indeks keluasan daun (LAI), berat 100 bijirin berisi (100GW), peratus bijirin berisi (FG), nisbah bijirin kepada LAI (GToLAI) dan beberapa nutrien bijirin dalam varieti padi.
LAI berkolerasi positif dengan PH (R2=0.723**) dan konduksian stomata (R2=0.672**). Semua varieti mencatatkan kandungan klorofil relatif yang lebih tinggi pada 126 hari selepas disemai (DAS) berbanding pada 90 DAS. Peningkatan ini ketara dalam T36 untuk MR219 dan S303, menunjukkan kemampuan adaptasi terhadap pengingkatan suhu. Semua varieti mencatat indeks hasil lebih tinggi dalam T36, kecuali RC02 yang mempunyai FG lebih rendah. Semua varieti tidak menunjukkan perbezaan signifikan kandungan Mg, Al dan
Si tetapi MR219 dan RC09 merekod kandungan P dan K lebih rendah dalam T36. Ca lebih tinggi dalam T36 untuk semua varieti kecuali MR219. Kajian ini menekankan pelbagai tindak balas pertumbuhan, hasil dan nutrien varieti padi Malaysia terhadap peningkatan suhu. MR219, S303 dan RC09 menunjukkan adaptasi yang baik melalui mekanisme penyesuaian dengan mengekalkan LAI, 100GW, HI, dan Ca yang lebih tinggi berbanding S307 dan
RC02 yang menunjukkan kerentanan.
Kata kunci: Hasil padi; kenaikan suhu; padi Malaysia; pertumbuhan pokok; perubahan iklim
REFERENCES
Ali,
F., Waters, D.L.E., Ovenden, B., Bundock, P., Raymond, C.A. & Rose, T.J.
2019. Heat stress during grain fill reduces head rice yield through genotype
dependant increased husk biomass and grain breakage. Journal of Cereal
Science 90: 102820. https://doi.org/10.1016/j.jcs.2019.102820
Begcy, K., Sandhu, J. & Walia, H. 2018. Transient heat
stress during early seed development primes germination and seedling
establishment in rice. Frontiers in Plant Science 9: 1768.
https://doi.org/10.3389/fpls.2018.01768
Bellasio, C. 2023. The slope of
assimilation rate against stomatal conductance should not be used as a measure
of water use efficiency or stomatal control over assimilation. Photosynthesis
Research 158(3): 195-199. https://doi.org/10.1007/s11120-023-01054-6
Caine,
R.S., Harrison, E.L., Sloan, J., Flis, P.M., Fischer, S., Khan, M.S., Nguyen,
P.T., Nguyen, L.T., Gray, J.E. & Croft, H. 2023. The influences of stomatal
size and density on rice abiotic stress resilience. New Phytologist 237(6): 2180-2195. https://doi.org/10.1111/nph.18704
Chaturvedi,
A.K., Bahuguna, R.N., Pal, M., Shah, D., Maurya, S. & Jagadish, K.S.V.
2017. Elevated CO2 and heat stress interactions affect grain yield,
quality and mineral nutrient composition in rice under field conditions. Field
Crops Research 206: 149-157. https://doi.org/10.1016/j.fcr.2017.02.018
Dorairaj, D. & Govender, N.T. 2023.
Rice and paddy industry in Malaysia: Governance and policies, research trends,
technology adoption and resilience. Frontiers in Sustainable Food Systems 7: 1093605. https://www.frontiersin.org/articles/10.3389/fsufs.2023.1093605
Ezin, V., Ahanchede, W.W., Ayenan, M.A.T. & Ahanchede,
A. 2022. Physiological and agronomical evaluation of elite rice varieties for
adaptation to heat stress. BMC Plant Biology 22: 236.
https://doi.org/10.1186/s12870-022-03604-x
Hussain,
S., Khaliq, A., Ali, B., Hussain, H.A., Qadir, T. & Hussain, S. 2019.
Temperature extremes: Impact on rice growth and development. In Plant
Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches, edited by Hasanuzzaman, M., Hakeem, K.R.,
Nahar, K. & Alharby, H.F. Springer International
Publishing. pp. 153-171. https://doi.org/10.1007/978-3-030-06118-0_6
Jayaraman,
V. & Ramachandran, M. 2022. Heat tolerance and effect of high temperature
on floral biology and physiological parameters in rice: A review. Agricultural
Reviews 45(1):
115-120. https://arccjournals.com/journal/agricultural-reviews/R-2353
Kandel,
B.P. 2020. Spad value varies with age and leaf of maize plant and its
relationship with grain yield. BMC Research Notes 13(1): 475.
https://doi.org/10.1186/s13104-020-05324-7
Kilasi, N.L., Singh, J., Vallejos, C.E., Ye, C., Jagadish,
S.V.K., Kusolwa, P. & Rathinasabapathi,
B. 2018. Heat stress tolerance in rice (Oryza sativa L.): Identification
of quantitative trait loci and candidate genes for seedling growth under heat stress. Frontiers in Plant Science 9: 1578.
https://www.frontiersin.org/articles/10.3389/fpls.2018.01578
Krishna
Jagadish, S.V., Muthurajan, R., Rang, Z.W., Malo, R., Heuer, S., Bennett, J.
& Craufurd, P.Q. 2011. Spikelet proteomic
response to combined water deficit and heat stress in rice (Oryza sativa cv. N22). Rice 4: 1-11. https://doi.org/10.1007/s12284-011-9059-x
Li,
Y., Ming, B., Fan, P., Liu, Y., Wang, K., Hou, P., Xue, J., Li, S. & Xie,
R. 2022. Quantifying contributions of leaf area and longevity to leaf area
duration under increased planting density and nitrogen input regimens during
maize yield improvement. Field Crops Research 283: 108551.
https://doi.org/10.1016/j.fcr.2022.108551
Malini,
M.K., Karwa, S., Priyadarsini, P., Kumar, P., Nagar, S., Kumar, M., Kumar, S., Chinnusamy, V., Pandey, R. & Pal, M. 2023. Abscisic-acid-modulated
stomatal conductance governs high-temperature stress tolerance in rice accessions. Agriculture 13(3): 545. https://doi.org/10.3390/agriculture13030545
Nadarajah,
K., Omar, N.S. & Thing, T.Y. 2014. Molecular characterization of a WRKY
gene from Oryza sativa indica cultivar UKMRC9. Plant Omics 7(2):
63-71. https://doi.org/10.3316/informit.319863401224127
Nazir,
A., Ullah, S., Saqib, Z.A., Abbas, A., Ali, A., Iqbal, M.S., Hussain, K.,
Shakir, M., Shah, M. & Butt, M.U. 2021. Estimation and forecasting of rice
yield using phenology-based algorithm and linear regression model on sentinel-II
satellite data. Agriculture 11(10): 1026.
https://doi.org/10.3390/agriculture11101026
Nguyen,
K.M., Yang, Z.W., Shih, T.H., Lin, S.H., Lin, J.W., Nguyen, H.C. & Yang,
C.M. 2021. Temperature-mediated shifts in chlorophyll biosynthesis in leaves of
chlorophyll b-lacking rice (Oryza sativa L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 49(2): 12306. https://doi.org/10.15835/nbha49212306
NurulNahar, E., Adam, P., Mazidah,
M., Roslan, I., Rafii, Y.M. & Yusop, M.R. 2020. Rice blast disease in
Malaysia: Options for its control. Journal of Tropical Agriculture and Food
Science 48(1): 11-23.
Oliver,
S.N., Dennis, E.S. & Dolferus, R. 2007. ABA regulates apoplastic sugar transport and is a potential signal
for cold-induced pollen sterility in rice. Plant and Cell Physiology 48(9): 1319-1330. https://doi.org/10.1093/pcp/pcm100
Ouyang,
W., Struik, P.C., Yin, X. & Yang, J. 2017.
Stomatal conductance, mesophyll conductance, and transpiration efficiency in
relation to leaf anatomy in rice and wheat genotypes under drought. Journal
of Experimental Botany 68(18): 5191-5205.
https://doi.org/10.1093/jxb/erx314
Pirayesh, N., Giridhar, M., Ben Khedher, A., Vothknecht, U.C.
& Chigri, F. 2021. Organellar calcium signaling in plants: An update. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1868(4): 118948. https://doi.org/10.1016/j.bbamcr.2021.118948
Piveta, L.B., Roma-Burgos, N., Noldin,
J.A., Viana, V.E., de Oliveira, C., Lamego, F.P. & de Avila, L.A. 2020.
Molecular and physiological responses of rice and weedy rice to heat and
drought stress. Agriculture 11(1): 9.
https://doi.org/10.3390/agriculture11010009
Plaut,
Z., Butow, B.J., Blumenthal, C.S. & Wrigley, C.W. 2004. Transport of dry
matter into developing wheat kernels and its contribution to grain yield under
post-anthesis water deficit and elevated temperature. Field Crops Research 86(2): 185-198. https://doi.org/10.1016/j.fcr.2003.08.005
Rahman,
A.N.M.R. & Zhang, J. 2022. Trends in rice research: 2030 and beyond. Food
and Energy Security 2022: e390. https://doi.org/10.1002/fes3.390
Rao,
D.S., Siromani, N., Poojitha, J., Sakhare, A.S., Rao,
P.R. & Subrahmanyam, D. 2023. Effect of high-temperature stress on rice
grain quality. ORYZA-An International Journal of Rice 60(2): 345-352.
Reddy,
K.R., Seghal, A., Jumaa,
S., Bheemanahalli, R., Kakar, N., Redoña,
E.D., Wijewardana, C., Alsajri,
F.A., Chastain, D., Gao, W., Taduri, S. & Lone,
A.A. 2021. Morpho-physiological characterization of diverse rice genotypes for
seedling stage high- and low-temperature tolerance. Agronomy 11(1): 112.
https://doi.org/10.3390/agronomy11010112
Rouan, L., Audebert, A., Luquet,
D., Roques, S., Dardou, A. & Gozé,
E. 2018. Cardinal temperatures variability within a tropical japonica rice
diversity panel. Plant Production Science 21(3): 256-265.
https://doi.org/10.1080/1343943X.2018.1467733
Rubia,
L., Rangan, L., Choudhury, R.R., Kamínek, M., Dobrev,
P., Malbeck, J., Fowler, M., Slater, A., Scott, N.,
Bennett, J., Peng, S., Khush, G.S. & Elliott, M. 2014. Changes in the chlorophyll
content and cytokinin levels in the top three leaves of new plant type rice
during grain filling. Journal of Plant Growth Regulation 33(1): 66-76.
https://doi.org/10.1007/s00344-013-9374-0
Saad,
M.M., Saidon, S.A., Noorzuraini,
S., Rahman, A., Hashim, S. & Fauzi, M.F.M. 2021. Resistance status of
drought-tolerant rice variety’s donor parents to major rice insect pests. Buletin Teknologi MARDI 26: 55-64.
Sanadya, A., Yadu, A., Raj, J., Chandrakar, H. & Singh, R. 2023. Effect of temperature
on growth, quality, yield attributing characters and yield of rice - A review. International
Journal of Environment and Climate Change 13(8): 804-814.
https://doi.org/10.9734/ijecc/2023/v13i82014
Sanwong, P., Sanitchon,
J., Dongsansuk, A. & Jothityangkoon,
D. 2023. High temperature alters phenology, seed development and yield in three
rice varieties. Plants 12(3): 666. https://doi.org/10.3390/plants12030666
Se,
C.H., Chuah, K.A., Mishra, A., Wickneswari, R. & Karupaiah, T. 2016. Evaluating crossbred red rice variants
for postprandial glucometabolic responses: A comparison with commercial varieties. Nutrients 8(5): 308. https://doi.org/10.3390/nu8050308
Senguttuvel, P., Jaldhani,
V., Raju, N.S., Balakrishnan, D., Beulah, P., Bhadana,
V.P., Mangrauthia, S.K., Neeraja, C.N., Subrahmanyam,
D., Rao, P.R., Hariprasad, A.S. & Voleti, S.R. 2022. Breeding rice for heat
tolerance and climate change scenario; possibilities and way forward. A review. Archives of Agronomy and Soil Science 68(1): 115-132.
https://doi.org/10.1080/03650340.2020.1826041
Sethuraman,
G., Mohd Zain, N.A., Yusoff, S., Ng, Y.M., Baisakh, N. & Cheng, A. 2021. Revamping
ecosystem services through agroecology - The case of cereals. Agriculture 11(3): 204. https://doi.org/10.3390/agriculture11030204
Shi,
W., Li, X., Schmidt, R.C., Struik, P.C., Yin, X.
& Jagadish, S.V.K. 2018. Pollen germination and in vivo fertilization
in response to high-temperature during flowering in hybrid and inbred rice. Plant,
Cell & Environment 41(6): 1287-1297. https://doi.org/10.1111/pce.13146
Shi,
W., Yin, X., Struik, P.C., Xie,
F., Schmidt, R.C. & Jagadish, K.S.V. 2016. Grain yield and quality
responses of tropical hybrid rice to high night-time temperature. Field
Crops Research 190: 18-25. https://doi.org/10.1016/j.fcr.2015.10.006
Shimoyanagi, R., Abo, M. & Shiotsu, F. 2021. Higher temperatures during grain filling
affect grain chalkiness and rice nutrient contents. Agronomy 11(7): 1360.
https://doi.org/10.3390/agronomy11071360
Sihag,
P., Kumar, U., Sagwal, V., Kapoor, P., Singh, Y., Mehla, S., Balyan, P., Mir, R.R., Varshney, R.K., Singh,
K.P. & Dhankher, O.P. 2024. Effect of terminal
heat stress on osmolyte accumulation and gene expression during grain filling
in bread wheat (Triticum aestivum L.). The
Plant Genome 17(1): e20307. https://doi.org/10.1002/tpg2.20307
Stuerz, S. & Asch, F. 2021. Responses of rice growth to
day and night temperature and relative air humidity - Leaf elongation and
assimilation. Plants 10(1): 134. https://doi.org/10.3390/plants10010134
Sunian, E., Ramli, A., Jamal, M.S., Saidon,
S.A. & Rahiniza. 2022. Development of high
yielding varieties for food sustainability production. Buletin Teknologi MARDI 30: 83-97.
Swapna,
S. & Shylaraj, K.S. 2017. Screening for osmotic
stress responses in rice varieties under drought condition. Rice Science 24(5): 253-263. https://doi.org/10.1016/j.rsci.2017.04.004
Tan,
B.T., Fam, P.S., Firdaus, R.B.R., Tan, M.L. & Gunaratne, M.S. 2021. Impact
of climate change on rice yield in Malaysia: A panel data analysis. Agriculture 11(6): 569.
https://doi.org/10.3390/agriculture11060569
Tang,
K.H.D. 2019. Climate change in Malaysia: Trends, contributors, impacts,
mitigation and adaptations. Science of The Total Environment 650: 1858-1871.
https://doi.org/10.1016/j.scitotenv.2018.09.316
Thuy,
T.L., Thach, T.N., Xa, T.T.T., Nha,
C.T., My, V.T.T., Nguyen, N.T.T. & Tien, N.T.K. 2021. Heat stress affects
seed set and grain quality of Vietnamese rice cultivars during heading and
grain filling period. Journal of Tropical Crop Science 8(3): 154-160.
Wakatsuki,
H., Takimoto, T., Ishigooka, Y., Nishimori, M.,
Sakata, M., Saida, N., Akagi, K., Makowski, D. & Hasegawa, T. 2023.
Effectiveness of heat tolerance rice cultivars in preserving grain appearance
quality under high temperatures - A meta-analysis. Field Crops Research 310:
109303. bioRxiv.
https://doi.org/10.1101/2023.03.09.531821
Wang,
B., Cai, W., Li, J., Wan, Y., Li, Y., Guo, C., Wilkes, A., You, S., Qin, X.,
Gao, Q. & Liu, K. 2020. Leaf photosynthesis and stomatal conductance
acclimate to elevated [CO2] and temperature thus increasing dry
matter productivity in a double rice cropping system. Field Crops Research 248: 107735. https://doi.org/10.1016/j.fcr.2020.107735
Xu,
Y., Chu, C. & Yao, S. 2021. The impact of high-temperature stress on rice:
Challenges and solutions. The Crop Journal 9(5): 963-976.
https://doi.org/10.1016/j.cj.2021.02.011
Yan,
Y., Hou, P., Duan, F., Niu, L., Dai, T., Wang, K., Zhao, M., Li, S. & Zhou,
W. 2021. Improving photosynthesis to increase grain yield potential: An
analysis of maize hybrids released in different years in China. Photosynthesis
Research 150(1-3): 295-311. https://doi.org/10.1007/s11120-021-00847-x
Yang,
J. 2018. Effect of high temperature on yield, quality and physiological
components of early rice. Pakistan Journal of Agricultural Sciences 55(01): 13-22. https://doi.org/10.21162/PAKJAS/18.2621
Zahra,
N., Hafeez, M.B., Ghaffar, A., Kausar, A., Zeidi, M.A., Siddique, K.H.M. &
Farooq, M. 2023. Plant photosynthesis under heat stress: Effects and
management. Environmental and Experimental Botany 206: 105178.
https://doi.org/10.1016/j.envexpbot.2022.105178
Zain,
N.A.M., Ismail, M.R., Puteh, A., Mahmood, M. & Islam, M.R. 2014. Impact of
cyclic water stress on growth, physiological responses and yield of rice (Oryza
sativa L.) grown in tropical environment. Ciência Rural 44(12): 2136-2141. https://doi.org/10.1590/0103-8478cr20131154
Zhen,
F., Wang, W., Wang, H., Zhou, J., Liu, B., Liu, B., Zhu, Y., Liu, L., Cao, W.
& Tang, L. 2019. Effects of short-term heat stress at booting stage on
rice-grain quality. Crop and Pasture Science 70(6): 486. https://doi.org/10.1071/CP18260
Zuki, Z.M., Rafii, M.Y., Ramli,
A., Oladosu, Y., Latif, M.A., Sijam, K., Ismail, M.R. & Sarif, H.M. 2020.
Segregation analysis for bacterial leaf blight disease resistance genes in rice
“MR219” using SSR marker. Chilean Journal of Agricultural Research 80(2): 227-233. https://doi.org/10.4067/S0718-58392020000200227
*Corresponding
author; email: amalina86@um.edu.my
|